UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education
Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER \square

CHEMISTRY

9701/35
Advanced Practical Skills
October/November 2010
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 13 and 14.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 13 printed pages and $\mathbf{3}$ blank pages.

1 FA 1 is an aqueous solution of hydrochloric acid, HCl .
FA 2 is aqueous sodium hydroxide containing $10.00 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{NaOH}$.
You are to determine the concentration, in moldm^{-3}, of the hydrochloric acid in FA 1.
(a) Method

- Fill a burette with FA 2.
- Pipette $10.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
- Add to the flask a few drops of the acid-base indicator provided.
- Place the flask on a white tile.
- Titrate the acid in the flask with FA 2.

You should perform a rough titration.
In the space below record your burette readings for this rough titration.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- \quad Record in a suitable form below all of your burette readings and the volume of FA 2 added in each accurate titration.
- Make certain any recorded results show the precision of your practical work.
(b) From your titration results obtain a suitable value to be used in your calculation. Show clearly how you have obtained this value.
$10.0 \mathrm{~cm}^{3}$ of FA 1 required \qquad cm^{3} of FA 2.

Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(c) (i) Calculate the concentration, in moldm^{-3}, of the sodium hydroxide in FA 2.

FA 2 contains $10.00 \mathrm{gdm}^{-3} \mathrm{NaOH}$.
[$A_{r}: \mathrm{H}, 1.0 ; \mathrm{O}, 16.0 ; \mathrm{Na}, 23.0$]

The concentration of sodium hydroxide in FA 2 is \qquad moldm^{-3}.
(ii) Calculate how many moles of sodium hydroxide are contained in the volume recorded in (b).
\qquad mol of NaOH .
(iii) Deduce how many moles of hydrochloric acid were pipetted into the conical flask and calculate the concentration, in moldm^{-3}, of the hydrochloric acid in FA 1.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The concentration of the hydrochloric acid in FA 1 is \qquad moldm^{-3}.
[Total: 10]

BLANK PAGE

2 FA 3 is crushed impure calcium carbonate, CaCO_{3}.

FA 4 is $0.500 \mathrm{moldm}^{-3}$ hydrochloric acid
FA 5 is $0.280 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
You are to determine the percentage purity of calcium carbonate by dissolving a measured mass of FA 3 in a known volume of hydrochloric acid, which is in excess.
The hydrochloric acid remaining after all the calcium carbonate has dissolved can be determined by titration with aqueous sodium hydroxide, FA 4.
You may assume that any impurity present in the calcium carbonate does not react with hydrochloric acid.
(a) Method - Read through the instructions before starting any practical work.

- Weigh and record the mass of an empty boiling-tube.
- Add to the boiling-tube between 2.60 g and 2.80 g of FA 3 .
- Reweigh the tube and its contents.
- In part (b) of the method you will tip the FA 3 into hydrochloric acid, then re-weigh the tube and any residual FA 3.

In the space below record, in an appropriate form, all of the balance readings and the mass of FA 3 used in the experiment.

For
Examiner's
Use
(b) Method - Read through the instructions before starting any practical work.

- Pour approximately $150 \mathrm{~cm}^{3}$ of FA 4 into a $250 \mathrm{~cm}^{3}$ beaker.
- Add, a little at a time with constant stirring, the weighed FA 3 to the acid in the beaker.
- After each small addition stir until the effervescence has ceased and all the solid has dissolved.
- Reweigh the tube and any residual FA 3. Record the mass in (a).
- Transfer the solution in the beaker to the $250 \mathrm{~cm}^{3}$ graduated (volumetric) flask labelled FA 6.
- Rinse the beaker several times with a small amount of FA 4 and add the rinsings to the graduated flask.
- Make up the solution to the $250 \mathrm{~cm}^{3}$ mark by adding FA 4, not water.
- Shake the flask to obtain a uniform solution.

Titration

- Fill a burette with FA 5.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 6 from the graduated flask into a conical flask.
- Add to the flask a few drops of the acid-base indicator provided.
- Place the flask on a white tile.
- Titrate the acid in the flask with FA 5.

You should perform a rough titration.
In the space below record your burette readings for this rough titration.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Record in a suitable form below all of your burette readings and the volume of FA 5 added in each titration.
- Make certain any recorded results show the precision of your practical work.
(c) From your titration results obtain a suitable value to be used in your calculation. Show clearly how you have obtained this value.
\qquad cm^{3} of FA 5.

(d) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.

Remember - FA 4 is $0.500 \mathrm{moldm}^{-3}$ hydrochloric acid FA 5 is $0.280 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
(i) Calculate how many moles of sodium hydroxide are contained in the volume recorded in (c).
\qquad mol of NaOH
(ii) Deduce how many moles of hydrochloric acid reacted with the sodium hydroxide in (i) and calculate how many moles of hydrochloric acid were present in the $250 \mathrm{~cm}^{3}$ graduated flask labelled FA 6.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

\qquad mol of HCl were present in the graduated flask.
(iii) Calculate how many moles of hydrochloric acid were present in $250 \mathrm{~cm}^{3}$ of FA 4.
\qquad mol HCl.
(iv) Calculate the following.
(answer to (d)(iii) - answer to (d)(ii))

This is the amount of hydrochloric acid that reacted with the calcium carbonate in the weighed sample of FA 3.
\qquad g FA 3.
\qquad
(v) Use your answer to (iv) to calculate the mass of calcium carbonate that reacted with hydrochloric acid.

For
Examiner's

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

[$\left.A_{\mathrm{r}}: \mathrm{Ca}, 40.0 ; \mathrm{C}, 12.0 ; \mathrm{O}, 16.0\right]$

The weighed sample of FA 3 contains \qquad g of CaCO_{3}.
(vi) Calculate the percentage of calcium carbonate, CaCO_{3}, in FA 3 by evaluating the following expression.

$$
\frac{\text { mass of } \mathrm{CaCO}_{3} \text { from }(\mathbf{d})(\mathbf{v})}{\text { mass of } \mathrm{FA} 3 \text { used, from }(\mathbf{a})} \times 100
$$

Complete your evaluation even if your answer is greater than 100%

FA 3 contains \qquad \% calcium carbonate.
(e) 6.25 g of pure calcium carbonate are required to neutralise all the hydrochloric acid in $250 \mathrm{~cm}^{3}$ of FA 4.

You were instructed to measure a mass between 2.60 g and 2.80 g of FA 3 in this experiment.

What difficulties might you encounter if you used a mass of about 5.50 g of FA 3 in this experiment?
\qquad
\qquad
\qquad
(f) (i) Complete the following table.

The balance used in the experiment displays the mass to decimal places.
The maximum error in a single balance reading is	\pm................... 9.
The maximum error in measuring the mass of FA $\mathbf{3}$ is	

(ii) Calculate the maximum percentage error in the mass of FA 3 measured in (a).

The maximum error in the mass of FA $\mathbf{3}$ is \%.
(g) (i) The percentage of calcium carbonate in the weighed sample of FA 3 can also be found by investigating the thermal decomposition of the compound into calcium oxide and carbon dioxide.
Write a balanced equation, including state symbols, for this thermal decomposition.
(ii) Briefly outline the key measurements to be made in order to find the percentage of calcium carbonate in FA 3 by this method.
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
(You do not have to use all of the numbered steps in your answer)

3 FA 7, FA 8 and FA 9 are aqueous solutions, each containing one cation and one anion from those listed on pages 13 and 14 in the Qualitative Analysis Notes.

For
Examiner's
Use
At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling-tube MUST be used.
Rinse and reuse test-tubes wherever possible.
(a) Use aqueous sodium hydroxide and aqueous ammonia, in separate tests, to identify the cation present in FA 7, FA 8 and FA 9.

Present your results for each of the solutions in a suitable form below.

Conclusion

Complete the following table.

solution	cation	supporting evidence
FA 7		
FA 8		
FA 9		

(b) (i) FA 7, FA 8 and FA 9 each contain a single anion which may be $\mathrm{Cl}^{-}, \mathrm{I}^{-}$or $\mathrm{SO}_{4}{ }^{2-}$. Suggest a reagent that would enable you to identify any solutions containing $\mathrm{SO}_{4}{ }^{2-}$. Reagent \qquad
Use this reagent to test each of the solutions. Record your observations in the table below. Indicate, with a tick in the final column, any solution containing $\mathrm{SO}_{4}{ }^{2-}$.

solution	observation	SO_{4}^{2-} present
FA 7		
FA 8		
FA 9		

(ii) Select a further reagent that will enable you to identify the halide ion present in any remaining solution(s).

Reagent \qquad
Use this reagent to test the remaining solution(s).
Record your observations and the identity of the halide in a suitable form in the space below.
(c) FA 10 is a white crystalline solid which turns into another white solid, FA 11, when heated strongly.
Carry out the tests on FA 10 and FA 11 in the table below.
Observe carefully at each stage and record all of your observations in the table.

test		observations	
(i)	Place 1 spatula measure of FA 10 in a hard glass test-tube. Heat the solid very strongly until no further change is seen.		
(ii)	Place 1 small spatula measure of FA 11 in a test-tube and add 1 cm depth of dilute hydrochloric acid.		1
			11
			III
			IV
			V

As soon as you have completed your observation in (ii), fill the test-tube with water.
[Total: 16]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { iron(III), } \\ & \mathrm{Fe}^{3+}(\mathrm{aq}) \end{aligned}$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
$\begin{aligned} & \text { lead(II), } \\ & \mathrm{Pb}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \text { Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chromate(VI), $\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})$	yellow solution turns orange with $\mathrm{H}^{+}(\mathrm{aq})$; gives yellow ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$; gives bright yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-(a q)}$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil, NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ or with $\mathrm{Pb}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acid)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns acidified aqueous potassium dichromate(VI) from orange to green

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge

